1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | #include<iostream>
using namespace std;
struct node
{
node *next;
int data ;
node * prev;
node () { data=0; next=prev=NULL; }
} ;
//////////////////////////////////////////////
class Dlinklist
{
node *head ,*tail ;
public:
Dlinklist() { head = tail =NULL; }
void add_to_tail ();
void add_to_head();
void del_from_tail();
void del_from_head();
void show_from_head();
void show_from_tail();
};
/////////////////////////////////////////
void Dlinklist::add_to_head()
{
node* temp = new node ();
cout<<"Enter the value"<<endl;
cin>>temp->data;
if(head==0)
{ head=tail=temp; }
else {
temp->next =head;
head->prev=temp;
head=temp; }
}
/////////////////////////////////////////////////////
void Dlinklist::add_to_tail()
{
node* temp =new node();
cout<<"Enter the value"<<endl;
cin>>temp->data;
if( tail==0)
{ head=tail=temp; }
else {
tail->next=temp;
temp->prev = tail;
tail =temp ;
}
}
////////////////////////////////////////////////////
void Dlinklist::del_from_head()
{ if (head==0)
cout<<"Empty list"<<endl;
else
{ node* temp =head;
head=head->next; head->prev=0; delete temp; }
}
//////////////////////////////////////////////////
void Dlinklist::del_from_tail()
{ if(tail==0)
{ cout<<"Empty List"<<endl; }
else { node* temp=tail; tail= tail->prev; tail->next = 0; delete temp; } }
////////////////////////////////////////////////////
void Dlinklist::show_from_head()
{
node* temp = head;
while(temp!=0)
{ cout<<endl<<temp->data;
temp=temp->next; } }
//////////////////////////////
void Dlinklist::show_from_tail()
{ node* temp = tail;
while(temp!=0)
{ cout<<endl<<temp->data;
temp=temp->prev; } }
//////////////////////////
void main()
{ Dlinklist d1;
int c;
cout<<endl<<"---------MENU---------"<<endl;
do{ cout<<"1. Add value to head"<<endl;
cout<<"2. Add value to tail"<<endl;
cout<<"3. Show values from head"<<endl;
cout<<"4. Show values from tail"<<endl;
cout<<"5. Delete values from head"<<endl;
cout<<"6. Delete values from tail"<<endl;
cout<<"Enter Your Choice"<<endl;
cin>>c;
switch(c)
{
case 1:d1.add_to_head();break;
case 2:d1.add_to_tail();break;
case 3:d1.show_from_head();break;
case 4:d1.show_from_tail();break;
case 5:d1.del_from_head();break;
case 6: d1.del_from_tail(); break;
default:cout<<"Invalid"<<endl;break;
}
} while(1);
}
|
This blog is about my daily programming technologies I explore and work on. It contains data from my University learning materials to my Profession as Software Engineer. Programming in Asp.net, Windows Forms, JavaScript, HTML, OpenGL, Assembly Language, Dynamics CRM 2011.
Feedjit
Articles for you
Tuesday, December 31, 2013
Doubly LinkList in C++, Object Oriented Programming, Data Structure in C++ Addition, Deletion, Search
By
Saqib Khan
at
December 31, 2013
Doubly LinkList in C++, Object Oriented Programming, Data Structure in C++ Addition, Deletion, Search
2013-12-31T02:24:00-08:00
Saqib Khan
Computer Science|F09B|Islamic University|
Comments
Labels:
Computer Science,
F09B,
Islamic University
Easiest Implementation of AVL Tree in C++ Insertion, Deletion and Balancing AVL_Tree
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | /* Write a C++ program to perform the following operations on AVL-trees:
a) Insertion.
b) Deletion. */
#include<iostream>
#include<stdlib.h>
using namespace std;
#define TRUE 1
#define FALSE 0
#define NULL 0
class AVL;
class AVLNODE
{
friend class AVL;
private:
int data;
AVLNODE *left,*right;
int bf;
};
class AVL
{
private:
AVLNODE *root;
public:
AVLNODE *loc,*par;
AVL()
{
root=NULL;
}
int insert(int);
void displayitem();
void display(AVLNODE *);
void removeitem(int);
void remove1(AVLNODE *,AVLNODE *,int);
void remove2(AVLNODE *,AVLNODE *,int);
void search(int x);
void search1(AVLNODE *,int);
};
int AVL::insert(int x)
{
AVLNODE *a,*b,*c,*f,*p,*q,*y;
int found,unbalanced;
int d;
if(root==0) //special case empty tree
{ y=new AVLNODE;
y->data=x;
root=y;
root->bf=0;
root->left=root->right=NULL;
return TRUE; }
//phase 1:locate insertion point for x.a keeps track of the most
// recent node with balance factor +/-1,and f is the parent of a
// q follows p through the tree.
f=NULL;
a=p=root;
q=NULL;
found=FALSE;
while(p&&!found)
{ //search for insertion point for x
if(p->bf)
{
a=p;
f=q;
}
if(x<p->data) //take left branch
{
q=p;
p=p->left;
}
else if(x>p->data)
{
q=p;
p=p->right;
}
else
{
y=p;
found=TRUE;
}
} //end while
//phase 2:insert and rebalance.x is not in the tree and
// may be inserted as the appropriate child of q.
if(!found)
{
y = new AVLNODE;
y->data=x;
y->left=y->right=NULL;
y->bf=0;
if(x<q->data) //insert as left child
q->left=y;
else
q->right=y; //insert as right child
//adjust balance factors of nodes on path from a to q
//note that by the definition of a,all nodes on this
//path must have balance factors of 0 and so will change
//to +/- d=+1 implies that x is inserted in the left
// subtree of a d=-1 implies
//to that x inserted in the right subtree of a.
if(x>a->data)
{
p=a->right;
b=p;
d=-1;
}
else
{
p=a->left;
b=p;
d=1;
}
while(p!=y)
if(x>p->data) //height of right increases by 1
{
p->bf=-1;
p=p->right;
}
else //height of left increases by 1
{
p->bf=1;
p=p->left;
}
//is tree unbalanced
unbalanced=TRUE;
if(!(a->bf)||!(a->bf+d))
{ //tree still balanced
a->bf+=d;
unbalanced=FALSE;
}
if(unbalanced) //tree unbalanced,determine rotation type
{
if(d==1)
{ //left imbalance
if(b->bf==1) //rotation type LL
{
a->left=b->right;
b->right=a;
a->bf=0;
b->bf=0;
}
else //rotation type LR
{
c=b->right;
b->right=c->left;
a->left=c->right;
c->left=b;
c->right=a;
switch(c->bf)
{
case 1: a->bf=-1; //LR(b)
b->bf=0;
break;
case -1:b->bf=1; //LR(c)
a->bf=0;
break;
case 0: b->bf=0; //LR(a)
a->bf=0;
break;
}
c->bf=0;
b=c; //b is the new root
} //end of LR
} //end of left imbalance
else //right imbalance
{
if(b->bf==-1) //rotation type RR
{
a->right=b->left;
b->left=a;
a->bf=0;
b->bf=0;
}
else //rotation type LR
{
c=b->right;
b->right=c->left;
a->right=c->left;
c->right=b;
c->left=a;
switch(c->bf)
{
case 1: a->bf=-1; //LR(b)
b->bf=0;
break;
case -1:b->bf=1; //LR(c)
a->bf=0;
break;
case 0: b->bf=0; //LR(a)
a->bf=0;
break;
}
c->bf=0;
b=c; //b is the new root
} //end of LR
}
//subtree with root b has been rebalanced and is the new subtree
if(!f)
root=b;
else if(a==f->left)
f->left=b;
else if(a==f->right)
f->right=b;
} //end of if unbalanced
return TRUE;
} //end of if(!found)
return FALSE;
} //end of AVL INSERTION
void AVL::displayitem()
{
display(root);
}
void AVL::display(AVLNODE *temp)
{
if(temp==NULL)
return;
cout<<temp->data<<" ";
display(temp->left);
display(temp->right);
}
void AVL::removeitem(int x)
{
search(x);
if(loc==NULL)
{
cout<<"\nitem is not in tree";
return;
}
if(loc->right!=NULL&&loc->left!=NULL)
remove1(loc,par,x);
else
remove2(loc,par,x);
}
void AVL::remove1(AVLNODE *l,AVLNODE *p,int x)
{
AVLNODE *ptr,*save,*suc,*psuc;
ptr=l->right;
save=l;
while(ptr->left!=NULL)
{
save=ptr;
ptr=ptr->left;
}
suc=ptr;
psuc=save;
remove2(suc,psuc,x);
if(p!=NULL)
if(l==p->left)
p->left=suc;
else
p->right=suc;
else
root=l;
suc->left=l->left;
suc->right=l->right;
return;
}
void AVL::remove2(AVLNODE *s,AVLNODE *p,int x)
{
AVLNODE *child;
if(s->left==NULL && s->right==NULL)
child=NULL;
else if(s->left!=NULL)
child=s->left;
else
child=s->right;
if(p!=NULL)
if(s==p->left)
p->left=child;
else
p->right=child;
else
root=child;
}
void AVL::search(int x)
{
search1(root,x);
}
void AVL::search1(AVLNODE *temp,int x)
{
AVLNODE *ptr,*save;
int flag;
if(temp==NULL)
{
cout<<"\nthe tree is empty";
return;
}
if(temp->data==x)
{
cout<<"\nthe item is root and is found";
par=NULL;
loc=temp;
par->left=NULL;
par->right=NULL;
return; }
if( x < temp->data)
{
ptr=temp->left;
save=temp;
}
else
{
ptr=temp->right;
save=temp;
}
while(ptr!=NULL)
{
if(x==ptr->data)
{ flag=1;
cout<<"\nitemfound";
loc=ptr;
par=save;
}
if(x<ptr->data)
ptr=ptr->left;
else
ptr=ptr->right;
}
if(flag!=1)
{
cout<<"\nitem is not there in tree";
loc=NULL;
par=NULL;
cout<<loc;
cout<<par;
}
}
void main()
{
AVL a;
int x,y,c;
char ch;
do
{
cout<<"\n1.insert";
cout<<"\n2.display";
cout<<"\n3.delete";
cout<<"\n4.search";
cout<<"\n5.exit";
cout<<"\nEnter u r choice to perform on AVL tree";
cin>>c;
switch(c)
{
case 1:cout<<"\nEnter an element to insert into tree";
cin>>x;
a.insert(x);
break;
case 2:a.displayitem(); break;
case 3:cout<<"\nEnter an item to deletion";
cin>>y;
a.removeitem(y);
break;
case 4:cout<<"\nEnter an element to search";
cin>>c;
a.search(c);
break;
case 5:exit(0); break;
default :cout<<"\nInvalid option try again";
}
cout<<"\ndo u want to continue";
cin>>ch;
}
while(ch=='y'||ch=='Y');
}
|
By
Saqib Khan
at
December 31, 2013
Easiest Implementation of AVL Tree in C++ Insertion, Deletion and Balancing AVL_Tree
2013-12-31T01:58:00-08:00
Saqib Khan
C++|Computer Science|F09B|Islamic University|
Comments
Labels:
C++,
Computer Science,
F09B,
Islamic University
Fastest and Simplest Binary Search Tree in C++, Data Structure and Algorithm C++ Program
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | //Binary Search Tree Program
#include <iostream>
#include <cstdlib>
using namespace std;
class BinarySearchTree
{
private:
struct tree_node
{
tree_node* left;
tree_node* right;
int data;
};
tree_node* root;
public:
BinarySearchTree()
{
root = NULL;
}
bool isEmpty() const { return root==NULL; }
void print_inorder();
void inorder(tree_node*);
void print_preorder();
void preorder(tree_node*);
void print_postorder();
void postorder(tree_node*);
void insert(int);
void remove(int);
};
// Smaller elements go left
// larger elements go right
void BinarySearchTree::insert(int d)
{
tree_node* t = new tree_node;
tree_node* parent;
t->data = d;
t->left = NULL;
t->right = NULL;
parent = NULL;
// is this a new tree?
if(isEmpty()) root = t;
else
{
//Note: ALL insertions are as leaf nodes
tree_node* curr;
curr = root;
// Find the Node's parent
while(curr)
{
parent = curr;
if(t->data > curr->data) curr = curr->right;
else curr = curr->left;
}
if(t->data < parent->data)
parent->left = t;
else
parent->right = t;
}
}
void BinarySearchTree::remove(int d)
{
//Locate the element
bool found = false;
if(isEmpty())
{
cout<<" This Tree is empty! "<<endl;
return;
}
tree_node* curr;
tree_node* parent;
curr = root;
while(curr != NULL)
{
if(curr->data == d)
{
found = true;
break;
}
else
{
parent = curr;
if(d>curr->data) curr = curr->right;
else curr = curr->left;
}
}
if(!found)
{
cout<<" Data not found! "<<endl;
return;
}
// 3 cases :
// 1. We're removing a leaf node
// 2. We're removing a node with a single child
// 3. we're removing a node with 2 children
// Node with single child
if((curr->left == NULL && curr->right != NULL)|| (curr->left != NULL
&& curr->right == NULL))
{
if(curr->left == NULL && curr->right != NULL)
{
if(parent->left == curr)
{
parent->left = curr->right;
delete curr;
cout<<" Item Deleted"<<endl;
}
else
{
parent->right = curr->right;
delete curr;
cout<<" Item Deleted"<<endl;
}
}
else // left child present, no right child
{
if(parent->left == curr)
{
parent->left = curr->left;
delete curr;
cout<<" Item Deleted"<<endl;
}
else
{
parent->right = curr->left;
delete curr;
cout<<" Item Deleted"<<endl;
}
}
return;
}
//We're looking at a leaf node
if( curr->left == NULL && curr->right == NULL)
{
if(parent->left == curr) parent->left = NULL;
else parent->right = NULL;
delete curr;
cout<<" Item Deleted"<<endl;
return;
}
//Node with 2 children
// replace node with smallest value in right subtree
if (curr->left != NULL && curr->right != NULL)
{
tree_node* chkr;
chkr = curr->right;
if((chkr->left == NULL) && (chkr->right == NULL))
{
curr = chkr;
delete chkr;
cout<<" Item Deleted"<<endl;
curr->right = NULL;
}
else // right child has children
{
//if the node's right child has a left child
// Move all the way down left to locate smallest element
if((curr->right)->left != NULL)
{
tree_node* lcurr;
tree_node* lcurrp;
lcurrp = curr->right;
lcurr = (curr->right)->left;
while(lcurr->left != NULL)
{
lcurrp = lcurr;
lcurr = lcurr->left;
}
curr->data = lcurr->data;
delete lcurr;
cout<<" Item Deleted"<<endl;
lcurrp->left = NULL;
}
else
{
tree_node* tmp;
tmp = curr->right;
curr->data = tmp->data;
curr->right = tmp->right;
delete tmp;
cout<<" Item Deleted"<<endl;
}
}
return;
}
}
void BinarySearchTree::print_inorder()
{
inorder(root);
}
void BinarySearchTree::inorder(tree_node* p)
{
if(p != NULL)
{
if(p->left) inorder(p->left);
cout<<" "<<p->data<<" ";
if(p->right) inorder(p->right);
}
else return;
}
void BinarySearchTree::print_preorder()
{
preorder(root);
}
void BinarySearchTree::preorder(tree_node* p)
{
if(p != NULL)
{
cout<<" "<<p->data<<" ";
if(p->left) preorder(p->left);
if(p->right) preorder(p->right);
}
else return;
}
void BinarySearchTree::print_postorder()
{
postorder(root);
}
void BinarySearchTree::postorder(tree_node* p)
{
if(p != NULL)
{
if(p->left) postorder(p->left);
if(p->right) postorder(p->right);
cout<<" "<<p->data<<" ";
}
else return;
}
int main()
{
BinarySearchTree b;
int ch,tmp,tmp1;
while(1)
{
cout<<endl<<endl;
cout<<" Binary Search Tree Operations "<<endl;
cout<<" ----------------------------- "<<endl;
cout<<" 1. Insertion/Creation "<<endl;
cout<<" 2. In-Order Traversal "<<endl;
cout<<" 3. Pre-Order Traversal "<<endl;
cout<<" 4. Post-Order Traversal "<<endl;
cout<<" 5. Removal "<<endl;
cout<<" 6. Exit "<<endl;
cout<<" Enter your choice : ";
cin>>ch;
switch(ch)
{
case 1 : cout<<" Enter Number to be inserted : ";
cin>>tmp;
b.insert(tmp);
break;
case 2 : cout<<endl;
cout<<" In-Order Traversal "<<endl;
cout<<" -------------------"<<endl;
b.print_inorder();
break;
case 3 : cout<<endl;
cout<<" Pre-Order Traversal "<<endl;
cout<<" -------------------"<<endl;
b.print_preorder();
break;
case 4 : cout<<endl;
cout<<" Post-Order Traversal "<<endl;
cout<<" --------------------"<<endl;
b.print_postorder();
break;
case 5 : cout<<" Enter data to be deleted : ";
cin>>tmp1;
b.remove(tmp1);
break;
case 6 :
return 0;
}
}
}
|
By
Saqib Khan
at
December 31, 2013
Fastest and Simplest Binary Search Tree in C++, Data Structure and Algorithm C++ Program
2013-12-31T01:55:00-08:00
Saqib Khan
C++|Computer Science|F09B|Islamic University|Sir Nadeem|
Comments
Labels:
C++,
Computer Science,
F09B,
Islamic University,
Sir Nadeem
Subscribe to:
Posts (Atom)